Differentiation of the brain vasculature: the answer came blowing by the Wnt

نویسندگان

  • Stefan Liebner
  • Karl H Plate
چکیده

Vascularization of the vertebrate brain takes place during embryonic development from a preformed perineural vascular plexus. As a consequence of the intimate contact with neuroectodermal cells the vessels, which are entering the brain exclusively via sprouting angiogenesis, acquire and maintain unique barrier properties known as the blood-brain barrier (BBB). The endothelial BBB depends upon the close association of endothelial cells with pericytes, astrocytes, neurons and microglia, which are summarized in the term neuro-vascular unit. Although it is known since decades that the CNS tissue provides the cues for BBB induction and differentiation in endothelial cells, the molecular mechanism remained obscure.Only recently, the canonical Wnt/beta-catenin pathway and the Wnt7a/7b growth factors have been implicated in brain angiogenesis on the one hand and in BBB induction on the other. This breakthrough in understanding the differentiation of the brain vasculature prompted us to review these findings embedded in the emerging concepts of Wnt signaling in the vasculature. In particular, interactions with other pathways that are crucial for vascular development such as VEGF, Notch, angiopoietins and Sonic hedgehog are discussed. Finally, we considered the potential role of the Wnt pathway in vascular brain pathologies in which BBB function is hampered, as for example in glioma, stroke and Alzheimer's disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TGF-β1 enhanced myocardial differentiation through inhibition of the Wnt/β-catenin pathway with rat BMSCs

Objective(s): To investigate and test the hypotheses that TGF-β1 enhanced myocardial differentiation through Wnt/β-catenin pathway with rat bone marrow mesenchymal stem cells (BMSCs).Materials and Methods: Lentiviral vectors carrying the TGF-β1 gene were transduced into rat BMSCs firstly. Then several kinds of experimental methods were u...

متن کامل

9-cis-Retinoic Acid and 1,25-dihydroxy Vitamin D3 Improve the Differentiation of Neural Stem Cells into Oligodendrocytes through the Inhibition of the Notch and Wnt Signaling Pathways

Background: Differentiating oligodendrocyte precursor cells (OPCs) into oligodendrocytes could be improved by inhibiting signaling pathways such as Wnt and Notch. 9-cis-retinoic acid (9-cis-RA) and 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) can ameliorate oligodendrogenesis. We investigated whether they could increase oligodendrogenesis by inhibiting the Wnt and Notch signaling pathways.Methods: Co...

متن کامل

The Effects of Glycogen Syntase Kinase-3 β Inhibitor on The Ostogenic Differentiation of Unrestricted Somatic Stem Cells (Ussc)

Purpose: Bone defects caused by injuries, trauma, cancer, surgical operation or joint dislocation have great impacts on general health. Considering that Wnt signalling is one of the important regulators of the stem cell control, we sought to examine if Wnt activation affects the osteogenic differentiation of the USSCs.Materials and Methods: In this study, we have treated USSCs cultured in osteo...

متن کامل

بررسی الگوی متیلاسیون و بیان ژن APC به دنبال تمایز سلول‌های بنیادی مزانشیمی مشتق از مغز استخوان به رده استئوبلاستی

Background and Aim: Different regulation processes have an effect on osteoblastic differentiation of mesenchymal stem cells (MSCs), and among them Wnt signaling pathway is particularly desirable. In Wnt signaling pathway, Adenomatous Polyposis Coli (APC) bind to β-catenin and induce its degradation, thereby acting as a negative regulator of canonical Wnt pathway. In this study, gene expression ...

متن کامل

The Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State

 Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2010